Unabhängiges Magazin für Wirtschaft und Bildung

17. August 2018

Search form

Search form

Überraschende Forschung ermöglicht Umweltverbesserung

Überraschende Forschung ermöglicht Umweltverbesserung© TU Wien

TU Wien entdeckt bei Chemieatomen einen erstaunlichen Effekt, der Fahrzeugkatalysatoren effektiver machen kann.

Wie die Schokoladenglasur einer Torte schmeckt, sollte nicht davon abhängen, ob man sie auf einem Porzellan- oder einem Silberteller serviert. Auch für chemische Reaktionen auf der Oberfläche von großen Edelmetall-Partikeln sollte der Untergrund (der sogenannte Träger) eigentlich keine Rolle spielen. Die Partikel haben oft einen Durchmesser von vielen tausenden Atomen, und somit sollte das Material, auf dem sie aufliegen, für die chemischen Reaktionen auf der weit entfernten Oberseite der Partikel keine große Bedeutung haben. So dachte man zumindest bisher.

Untersuchungen an der TU Wien brachten nun ein überraschendes Ergebnis: Die chemischen Vorgänge auf Palladium-Körnchen, wie man sie auch für Abgaskatalysatoren verwendet, ändern sich erstaunlicherweise sehr deutlich, wenn man sie auf bestimmte Trägermaterialien platziert – auch wenn diese Oberflächen für die chemische Reaktion selbst fast gar keine Rolle spielen. Diese Erkenntnis wurde nun im Fachjournal „Nature Materials“ publiziert.

Giftiges Kohlenmonoxid
Bei Fahrzeugen mit Verbrennungsmotor muss giftiges Kohlenmonoxid (CO) in Kohlendioxid (CO2) umgewandelt werden. Das geschieht mit Hilfe eines Katalysators aus Palladium- oder Platinpulver. „Wir untersuchen die chemischen Reaktionen auf den Pulverkörnern, wie sie auch oft in der Industrie zur Katalyse eingesetzt werden“, sagt Günther Rupprechter vom Institut für Materialchemie der TU Wien.

Wenn die Oberfläche der Pulverkörnchen mit Sauerstoffatomen bedeckt ist, können diese reagieren, aus CO-Molekülen wird CO2 und in der Sauerstoffschicht bleiben Lücken zurück. Diese Lücken sollen rasch von anderen Sauerstoff-Atomen nachbesetzt werden. Problematisch wird es, wenn CO-Moleküle selbst diese Lücken ausfüllen. Geschieht das in großem Ausmaß, sodass das Pulverkorn schließlich nicht mehr von einer Sauerstoffschicht, sondern mit einer CO-Schicht bedeckt ist, kann kein CO2 mehr gebildet werden. Man spricht dann von der „Kohlenmonoxid-Vergiftung“ des Katalysators, die katalytische Wirkung erlischt.

Der Untergrund beeinflusst das ganze Korn
Ob und wann das geschieht, hängt von der CO-Konzentration im Abgas ab, das dem Katalysator zugefügt wird. Wie Experimente zeigen, ist auch die Unterlage der Palladium-Körnchen entscheidend. „Wenn die Körnchen auf einer Oberfläche aus Zirkoniumoxid oder Magnesiumoxid sitzen, dann kommt es erst bei viel höheren Kohlenmonoxid-Konzentrationen zur Katalysator-Vergiftung“, sagt Yuri Suchorski, der Erstautor der Studie. Das sei für so große Palladium-Körnchen auf den ersten Blick äußerst seltsam.
Lösen konnte man dieses Rätsel schließlich mit Hilfe des speziellen Photoemissionselektronenmikroskops am Institut für Materialchemie der TU Wien. Mit diesem Gerät kann man den räumlichen Verlauf einer katalytischen Reaktion in Echtzeit abbilden. „Wir konnten so ganz deutlich erkennen, dass die Kohlenmonoxid-Vergiftung immer am Rand eines Körnchens beginnt – genau dort, wo es auf dem Träger aufliegt“, erklärt Suchorski. „Von dort aus breitet sich dann die „Kohlenmonoxid-Vergiftung“ wie eine Welle über das ganze Körnchen aus.“

Der beste Platz für eine Attacke
Der Rand, wo das Körnchen direkten Kontakt mit dem Untergrund hat, ist also eine strategisch entscheidende Stelle – und genau dort ist der Träger in der Lage, die Eigenschaften des Metallkorns zu beeinflussen: „Berechnungen unserer Kooperationspartner von der Universität Barcelona zeigen, dass die Bindung zwischen den Metallatomen des Körnchens und der schützenden Sauerstoffschicht genau am Auflage-Rand verstärkt ist“, sagt Günther Rupprechter. Die Palladium-Atome in direktem Kontakt mit dem Trägeroxid können den Sauerstoff also besser festhalten.

Man könnte meinen, das sei für die weit entfernte Oberseite des Körnchens egal, denn der Untergrund kann nur die am Rand liegenden Atome energetisch beeinflussen. Doch weil die Kohlenmonoxid-Vergiftung genau an dieser Stelle beginnt, hat dieser kleine Effekt eine große strategische Bedeutung. Der Auflage-Rand ist gewissermaßen die Schwachstelle des Korns – und wenn diese Schwachstelle verstärkt wird, weil die katalytische Fähigkeit der Metallatome genau dort von der Unterlage positiv beeinflusst wird, kann man das ganze Mikrometer-große Katalysator-Körnchen vor der Kohlenmonoxid-Vergiftung schützen.

„Schon heute werden verschiedene Oxidträger in Katalysatoren eingesetzt, doch über ihre exakte Rolle während der Katalyse im Hinblick auf die CO-Vergiftung gab es bisher nur indirekte Hinweise“, erläutert Rupprechter. „Mit unseren Methoden wird der Ablauf des Prozesses und sein wellenartiger langreichweiter Effekt erstmals direkt sichtbar, und das gibt uns ganz neue Möglichkeiten, Katalysatoren zu verbessern.“

Die Arbeiten wurden im Rahmen des vom FWF geförderten Spezialforschungsbereichs (SFB) FOXSI und in Kooperation mit der Universität Barcelona (Spanien) durchgeführt.

Links

red/cc, Economy Ausgabe Webartikel, 18.05.2018